The oscillatory behavior of a class of third-order hybrid-type delay differential equations— used to model various real-world phenomena in fluid dynamics, control systems, biology, and beam deflection—is investigated in this study. A novel method is proposed, whereby these complex trinomial equations are reduced to a simpler binomial form by employing solutions of the corresponding linear differential equations. Through the use of comparison techniques and integral averaging methods, new oscillation criteria are derived to ensure that all solutions exhibit oscillatory behavior. These results are shown to extend and enhance existing theories in the oscillation analysis of functional differential equations. The effectiveness and originality of the proposed approach are illustrated by means of two representative examples.
Loading....